

FUSION Diagnostics: First Annual Review (Virtual) March 5, 2021

S.A. COHEN, PRINCETON PLASMA PHYSICS LAB
E. KOLEMEN, PRINCETON UNIVERSITY (MAE DEPARTMENT)

Team members and roles

- S.A. Cohen, PI
 - Set program & schedule
 - Operate PFRC-2
- ► B. Berlinger, Lead technician
 - Assemble & install diagnostic
- ► T. Provost, Vacuum specialist
 - Test vacuum integrity
- ► E. Evans, Graduate student
- Graduate student
 - Data collection & analysis system
 - Calibrate diagnostic
 - Operate diagnostic
 - Analyze data

- ► E. Kolemen, co-PI
 - Al planning of PFRC-2 runs
 - Al real-time PFRC-2 controls
- PSS scientist
 - Data analysis
- ▶ B. Koel
 - Provide ion gun for calibration

Stripping-cell Electrostatic Ion-energy Analyzer:

Metric	State of the Art	Proposed
Ion energy range (eV)	to 500 keV	To 3 keV
Time resolution (ms)	1	0.1
Spatial resolution (cm)	5	1
Energy Resolution ($\Delta E/E$)	<0.01	0.1
Mass (kg)	500	100
Volume (m³)	5	1
Plasma density (cm ⁻³)	5x10 ¹⁴	2x10 ¹³

Robust and portable

Technology Summary: innovations

- Reduce size and mass of E_i diagnostic using modern vacuum equipment and on-board computer controls.
- Reduce perturbations to ARPA-E research devices with improved design.
- Use modern data algorithms and accelerate data processing to allow feedback control of plasma.

Methodology

- Portable gold-standard technique: Stripping cell
 + electrostatic ion energy analyzer.
- Ion energy range (100-3000 eV) and spatial and temporal resolutions set for ARPA-E MFE facilities.

Deployment: PFRC-2 (Installation ~May 15)

Goal

 $\lambda_{e-H} \sim 25$ cm @ 100 eV, 1e13/cc (ionization)

▶ Test whether RMF_o heats ions when ω_{RMF} < 2 ω_{ci}

Contingent upon INFUSE (or other) funding for

PFRC-2 operations

Preparatory measurements: Ho density and ne in PFRC-2

Future plans

Fusion research

- Install & operate on PFRC-2
- Install & operate on HIT-SI
- Divertor diagnostic (MIT, NSTX, DIII-D...)
- Ion/neutral energies in detached divertor plasmas

Other possible applications

- Plasma processing
 - Role of energetic ions in etching
 - Formation/role of energetic neutrals during sputtering
- Spacecraft propulsion
 - Quantifying propellants: atomic vs molecular
 - Detachment of propellant from plasma rocket engines

